Locating coalescing singular values of large two-parameter matrices

نویسندگان

  • Luca Dieci
  • Maria Grazia Gasparo
  • Alessandra Papini
  • Alessandro Pugliese
چکیده

Consider a matrix valued function A(x) ∈ R, m ≥ n, smoothly depending on parameters x ∈ Ω ⊂ R, where Ω is simply connected and bounded. We consider a technique to locate parameter values where some of the q dominant (q ≤ n) singular values of A coalesce, in the specific case when A is large and m > n ≫ q. Notation. An m × n real matrix is indicated with A ∈ Rm×n. We always consider the 2-norm for vectors and matrices. A matrix valued function A : R → Rm×n, continuous with its first l derivatives (l ≥ 0), is indicated as A ∈ Cl(R,Rm×n). If l = 0, we also simply write A ∈ C. If A ∈ Cl(R,Rm×n) is periodic of (minimal) period τ > 0, we write it as A ∈ C τ (R,R m×n). With Ω ⊂ R2 we indicate an open and bounded simply connected planar region, and x = (x1, x2) will be coordinates in Ω. For a function A(x), x ∈ Ω, we will write A ∈ Cl(Ω,Rm×n) as appropriate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Draft version of January 16, 2009 LOCATING COALESCING SINGULAR VALUES OF LARGE TWO-PARAMETER MATRICES

Consider a matrix valued function A(x) ∈ R, m ≥ n, smoothly depending on parameters x ∈ Ω ⊂ R, where Ω is simply connected and bounded. We consider a technique to locate parameter values where the q dominant (q ≤ n) singular values of A coalesce, in the specific case when A is large and m > n ≫ q. Notation. An m × n real matrix is indicated with A ∈ Rm×n. We always consider the 2-norm for vecto...

متن کامل

Singular values of two-parameter matrices: an algorithm to accurately find their intersections

Consider the Singular Value Decomposition (SVD) of a two-parameter function A(x), x ∈ Ω ⊂ R2, where Ω is simply connected and compact, with boundary Γ. No matter how differentiable the function A is (even analytic), in general the singular values lose all smoothness at points where they coalesce. In this work, we propose and implement algorithms which locate points in Ω where the singular value...

متن کامل

Weak log-majorization inequalities of singular values between normal matrices and their absolute values

‎This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$‎. ‎Some applications to these inequalities are also given‎. ‎In addi...

متن کامل

Two-Parameter SVD: Coalescing Singular Values and Periodicity

We consider matrix valued functions of two parameters in a simply connected region Ω. We propose a new criterion to detect when such functions have coalescing singular values. For generic coalescings, the singular values come together in a “double cone”-like intersection. We relate the existence of any such singularity to the periodic structure of the orthogonal factors in the singular value de...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2011